Malaysian Sewerage Industry Guidelines

Sewage Treatment Plants
Malaysian Sewerage Industry Guidelines

VOLUME IV
SEWAGE TREATMENT PLANTS

Third Edition
National Water Services Commission (SPAN)
FOREWORD
BY THE CEO OF SPAN

Since independent, the wastewater treatment technology in Malaysia have evolved through the introduction of new systems in the industry. Since then basic sanitation facilities as overhang latrines, pit and bucket systems and pour flush systems were slowly replaced by more modern systems like aerated lagoons, activated sludge system, package systems and variety of mechanical plant. However, sewage still remains as one of the major pollutants of our inland waterways. In the 1900s, the emergent of new treatment technologies were mainly driven by the basic need to treat the sewage so as to control waterborne diseases. Today, the environmental regulations including effluent discharge standards are becoming more stringent with increasing awareness toward sustainable environmental management. Public are also more educated and more alert on the need to preserve the water source and the environment. Hence the introduction of more innovative design in municipal wastewater treatment technologies is needed in order to meet the stricter regulatory requirements.

Faster approvals of sewerage system provide better development potential within an area while standardization of system and equipment will lead to better operational efficiencies. Thus the first edition of the guidelines for sewerage industry entitled “Design and Installation of Sewerage Systems” was introduced in 1995. The main purpose of these guidelines is to assist the developer and professionals to plan and design sewerage systems that comply with the regulatory requirements. Certainly those guidelines have successfully paved the road towards nurturing a more structured sewerage industry development.

The National Water Services Commission (SPAN) has completed the exercise initiated by the Sewerage Services Department to review and improve those guidelines. The new revised documents were renamed as the “Malaysian Sewerage Industry Guidelines” which comprise of five (5) volumes.

These new revisions incorporated invaluable knowledge gained by various stakeholders in the sewerage sector over the past decade. SPAN would like to thank all parties involved in the revision exercise. It is hoped that the publication of the third edition of this volume will further improve the sewage system development in this country.

Chief Executive Officer
National Water Services Commission (SPAN)
Table of Contents

Section 1  Introduction and General Planning Requirements

1.1 Purpose of This Volume 3
1.2 Who Should Use This Volume 3
1.3 Related Reference Material 3
1.4 General Planning and Design Approval Requirements 4
1.5 Guidelines for Design Calculations 5
1.6 Guidelines for Drawings 7

Table 1.1 Recommended Population Equivalent 6
Figure 1.1 Typical Hydraulic Profile 9
Figure 1.2 Typical Process and Installation Diagram 10
Figure 1.3 Typical Process Flow Diagram 11
Figure 1.4 Typical Mass Balance Diagram 12
Figure 1.5 Typical Electrical Single Line Diagram 12

Section 2  Design Overview

2.1 Treatment Plant Classification 15
  2.1.1 Classification by Biological Treatment Processes 15
  2.1.2 Classification by Treatment Plant Capacity 16
2.2 Treatment System Selection / Design 16
  2.2.1 General Selection Considerations 16
  2.2.2 Design Stages 20
  2.2.3 Detailed Design Criteria 20
2.3 Safety and Health Principles 23
  2.3.1 General Safety 23
  2.3.2 Structural Safety 24
  2.3.3 Equipment and Electrical Safety 25

Table 2.1 Classification by Treatment Plant Capacity 16

Section 3  Sewage Characteristics and Effluent Discharge Requirements

3.1 Introduction 29
3.2 EQA Effluent Standards 29
  3.2.1 Purpose of Effluent Standards 29
  3.2.2 Interpretation of EQA Effluent Standards 29
3.3 Design Requirements to Achieve EQA Effluent Standards 30
   3.3.1 Purpose of Design Requirements 30
   3.3.2 Design Values 30
3.4 Sewage Pollutants Removal 31
   3.4.1 Biochemical Oxygen Demand (BOD₅) 31
   3.4.2 Total Suspended Solid (TSS) 32
   3.4.3 Chemical Oxygen Demand (COD) 32
   3.4.4 Oil and Grease (O&G) 32
   3.4.5 Nitrogenous Compound 33
   3.4.6 Phosphorus Compound 33
3.5 Sludge Characteristics and Treatment Requirements 34

Table 3.1 Design Influent Values 30
Table 3.2 Design Effluent Values 31

Section 4 Requirements for Physical Design
  4.1 Introduction 37
  4.2 Treatment Plant Siting 37
     4.2.1 Buffer Zones 37
     4.2.2 Siting Criteria 39
     4.2.3 Environmental Impact Assessment 39
     4.2.4 Hazard and Operability Studies 40
  4.3 Treatment Plant Sizing 40
     4.3.1 Modular Units 40
     4.3.2 Standby Units 40
     4.3.3 Back-up Capacity 41
     4.3.4 Design Flow 42
  4.4 Land Area Requirements 42
     4.4.1 Class 1 and 2 Plants 42
     4.4.2 Mechanised Class 3 to 4 Plants 42
     4.4.3 Aerated Lagoons and Stabilisation Ponds 43
     4.4.4 Imperfect Sites 43
     4.4.5 Reduced Land Areas for STPs 43
4.5 Mechanical and Electrical Requirements
   4.5.1 Mechanical Installation
   4.5.2 Vibration
   4.5.3 Noise
   4.5.4 Safety Around Equipment
   4.5.5 Motors, Controllers and Motor Starters
   4.5.6 Power Supply Systems
   4.5.7 Back-up Generator
   4.5.8 Switchgear and Control Gear Assemblies
   4.5.9 Control Cabinets
   4.5.10 Control Requirements
   4.5.11 Supervisory Control and Data Acquisition Systems (SCADA)
   4.5.12 Early Warning System (EWS)
   4.5.13 Instrumentation
   4.5.14 Cables and Cabling Installation
   4.5.15 Earthing and Lightning Protection
   4.5.16 General Purpose Power
   4.5.17 Manuals, Drawings and Labelling
   4.5.18 Hazardous Areas
4.6 Material Requirements for STP Structures and Installations
   4.6.1 Concrete and Reinforcement
   4.6.2 Steel
   4.6.3 Fibre Reinforced Plastic (FRP)
   4.6.4 Aluminium
   4.6.5 HDPE (High Density Polyethylene)

Table 4.1 Modulation Requirements
Table 4.2 Land Area Requirements for Class 1
Table 4.3 Land Area Requirement for Class 2
Table 4.4 Land Area Requirements for
Table 4.5 Land Area Requirements for
Table 4.6 Required Land Area for Stabilisation Pond and Aerated Lagoons
Section 5  Requirements for Individual Treatment Processes

5.1  Introduction 81
5.2  Design of Primary Screens 84
  5.2.1 Purpose of Primary Screens 84
  5.2.2 Inlet Chamber 84
  5.2.3 Design Requirements for Primary Screens 85
  5.2.4 General Requirements 86
5.3  Design of Pump Stations 91
  5.3.1 Purpose of Pump Stations 91
  5.3.2 Design Requirements 91
  5.3.3 General Requirements 95
5.4  Design of Secondary Screens 100
  5.4.1 Purpose of Secondary Screens 100
  5.4.2 Design Requirements 100
5.5  Design of Grit and Grease Chambers 101
  5.5.1 Purposes of Grit and Grease Chambers 101
  5.5.2 General Requirements 102
  5.5.3 Design Criteria 103
5.6  Design of Balancing Tanks 105
  5.6.1 Purposes of Balancing Tanks 105
  5.6.2 Design Requirements 105
5.7  Design of Primary Sedimentation Stage 106
  5.7.1 Purposes 106
  5.7.2 Design Requirements 106
5.8  Design of Biological Treatment Stage 108
  5.8.1 Introduction 108
  5.8.2 Conventional Activated Sludge System (CAS) 109
  5.8.3 Extended Aeration System (EA) 111
  5.8.4 Rotating Biological Contactors (RBC) 114
  5.8.5 Trickling Filter 116
Table 5.15  Design Parameters for Trickling Filter
Table 5.16  Design Requirements for SBR System
Table 5.17  Design Requirement for Biological Nutrient Removal System
Table 5.18  Design Parameters for Secondary Clarifiers
Table 5.19  Requirements for Disinfection Facility
Table 5.20  Design Guides for Disinfection with Ultra-Violet (UV)
Table 5.21  Design Guide for Disinfection with Hypochlorite
Table 5.22  Design Guide for Intermittent Disinfection
Table 5.23  Design Parameters for Flow Devices
Table 5.24  Sludge Generation Rates
Table 5.25  Design Parameters for Sludge Thickening
Table 5.26  Design Parameters for Aerobic and Anaerobic Digestion
Table 5.27  Recommended Design Parameters for Sludge Treatment
Figure 5.1  Typical Treatment Process Flow Chart
Figure 5.2  Typical Elements and Process Flow Diagram of a Sewage Treatment Plant
Figure 5.3  Typical Drawing of Double Penstock
Figure 5.4  Quantities of Screenings Collected From Primary Screens
Figure 5.5  Typical drawing of screen chamber based on depth. (<5m for different PE)
Figure 5.6  Typical drawing of screen chamber based on depth. (<5m for different PE)
Figure 5.7  Typical Dimensions of Wet-well Submersible Pump Station
Figure 5.8  Typical Dimensions of Dry-well Submersible Pump Station
Figure 5.9  Typical details of wet-well pump station
Figure 5.10  Typical details of dry-well pump station
Figure 5.11  Fine Bubble Diffuser Air – Extended Aeration System
Figure 5.12  Oxidation Ditch Activated Sludge System
Figure 5.13  Deep Shaft Activated Sludge System
Figure 5.14  Rotating Biological Contactor (RBC) Systems
Figure 5.15  Typical Process Flow Diagram for Biological Nutrient Removal System
Figure 5.16  Schematic illustration of ultraviolet disinfection system with stilling plate for flow conditioning and elongated weir for level control
Section 6 Requirements for Ancillary Facilities

6.1 Introduction
6.2 Water Supply and Wash Water
6.3 Mess Facilities and Ablutions
6.4 Roads and Access
6.5 Drainage
6.6 Fencing and Security
6.7 Beautification Zone and Landscape
6.8 Stores and Workshops
6.9 Spares
6.10 Yard Lighting
6.11 Sampling Facilities
6.12 Auto Restart Facilities
6.13 Safety Facilities
6.14 Doors
6.15 Fire Hydrant
6.16 Power Supply
6.17 Internal Sanitation (Toilet)
6.18 Lifting Requirement
6.19 Ventilation
6.20 Process Water
6.21 Aesthetic
6.22 Close Turfing
6.23 Standard Roofing and related requirement
6.24 Painting

Table 6.1 Minimum Number of Recommended Water Stand Pipe and Location
Table 6.2 Spare Part
Table 6.3 Numbers of Unit and Location of Compound Lighting
Table 6.4 Common ventilation rates 167
Table 6.5 Painting System Index – Colour Standards 170
Figure 6.1 Standard Details for Stand Pipe 151
Figure 6.2 Typical for Administration and Mess Facilities Building 152
Figure 6.3 Typical Details of Road Pavement 152
Figure 6.4 Typical Road Section of Site Road 152
Figure 6.5 Typical Drawing of Brickwall Fencing and Gate 155
Figure 6.6 Brickwall Fencing 156
Figure 6.7 Precast Fencing 157
Figure 6.8 Masonry Fencing 158
Figure 6.9 Typical Details of Compound Lighting 162
Figure 6.10 Typical Detail of Guard Rail 171
Figure 6.11 Typical Detail of Lifting Davit 172
Figure 6.12 Typical Detail of A-Frame Lifting Facilities 172

Section 7 Special Requirements

7.1 Temporary Treatment Plants 175

7.1.1 Definition 175

7.1.2 Category 1: Temporary Treatment Plant for Upgrading of Facilities 175

7.1.3 Category 2: Temporary Plants for New Housing Development 176

7.2 Treatment Plants Located Within Buildings 179

7.2.1 Introduction 172

7.2.2 Specific Guidelines and Requirements 180

7.3 Fully Enclosed Treatment Plant 181

7.3.1 Definition 185

7.3.2 General Requirements 185

7.3.3 Specific Requirements 186

7.4 Covered and Buried Treatment Plants 194

7.4.1 Definition 194

7.4.2 General 194

7.4.3 Specific Requirements for Covered or Buried Plants under 5,000 PE or Less 194
7.5 Guidelines for Homestead Developments

7.5.1 Single Developments up to 30 Units or 150 PE in Total

7.5.2 Single Developments Over 30 Units in Total with Average Housing Density Greater Than Five Units per Hectare

7.5.3 Single Developments Over 30 Units in Total with Average Housing Density Less Than Five Units per Hectare

7.6 Non-Compliance with Standards

7.6.1 Introduction

7.6.2 Types of Incident’s that Can Cause Treatment Plant Failure

7.7 Energy Saving

7.8 Recycle and Reuse

Section 8 Package Sewage Treatment Plant

8.1 Definition

8.2 Land Area Requirement

8.3 Design Requirement

8.4 Components of Package Sewage Treatment Plant

8.4.1 Layout, Piping and Arrangement of Prefabricated Biological Treatment System

8.4.2 Prefabricated Tanks

8.4.3 Process Treatment Units/Components

8.5 Appurtenances

8.5.1 Piping system

8.5.2 Pumping System

8.5.3 Diffuser

8.5.4 Flow Distribution Chamber

8.5.5 Manhole Cover/Inspection Chamber Cover

8.5.6 Anchor System Loading

8.5.7 Landscaping

8.5.8 Odour Treatment

8.5.9 Ancillary Facilities

8.6 Marking and Labelling
| Table 8.1 | Minimum Design Life Span of Package Sewage Treatment Plant Components | 206 |
| Table 8.2 | Recommended Number of Tanks and Effective Volume Consideration for Various Unit Processes | 207 |
| Table 8.3 | Technical Requirements of Pumping System | 209 |
| Table 8.4 | Technical Requirements of Manhole Cover | 210 |
APPENDICES

Appendix A Table

Table A1 Contaminants of Concern in Sewage Treatment 216
Table A2 Typical Composition of Untreated Domestic Sewage 217
Table A3 Major Biological Treatment Processes Used for Sewage Treatment 218
Table A4 Interim National River Water Quality Standards for Malaysia 220
Table A5 River Clarification 221
Table A6 The Occupational Safety and Health Act 514, 1994 - Brief Summary of Contents 222
Table A7 Permissible limits for potentially toxic elements in soil 223
Table A8 Options for disposal of Sludge and reuse of bio-solids 224

Appendix B References

Malaysian Standards 227
British Standard 228
European Standard 229
ASTM Standard 231
AS Standard 232
Other Reference Materials 232
Other Guidelines in This Set 232

Appendix C Supervisory Control and Data Acquisition System (SCADA)

C-1 Introduction: Overview 237
C-2 Purpose 238
C-3 General Requirements 238
C-4 Architecture 238
C-5 SCADA Requirement 239
C-6 Operator Interface 240
C-7 Database 241
C-8 Alarm/Event Management 241
C-9 Historian 243
C-10 Graphical Trending 243
C-11 Report Format 244
C-12 Security 244
C-13 Scripting 245
Appendix D  Duty and Standby Requirements

Table D.1  Duty and Standby Requirements for Activated Sludge Systems (Utilising Diffused Aeration) 268
Table D.2  Duty and Standby Requirements for Activated Sludge Systems (Utilising Mechanical Surface Aerator) 269
Table D.3  Duty and Standby Requirements for Rotating Biological Contactor Systems 270
Table D.4  Duty and Standby Requirements for Trickling Filter Systems 271

Appendix E  Glossary of Abbreviations

Glossary of Abbreviations 275